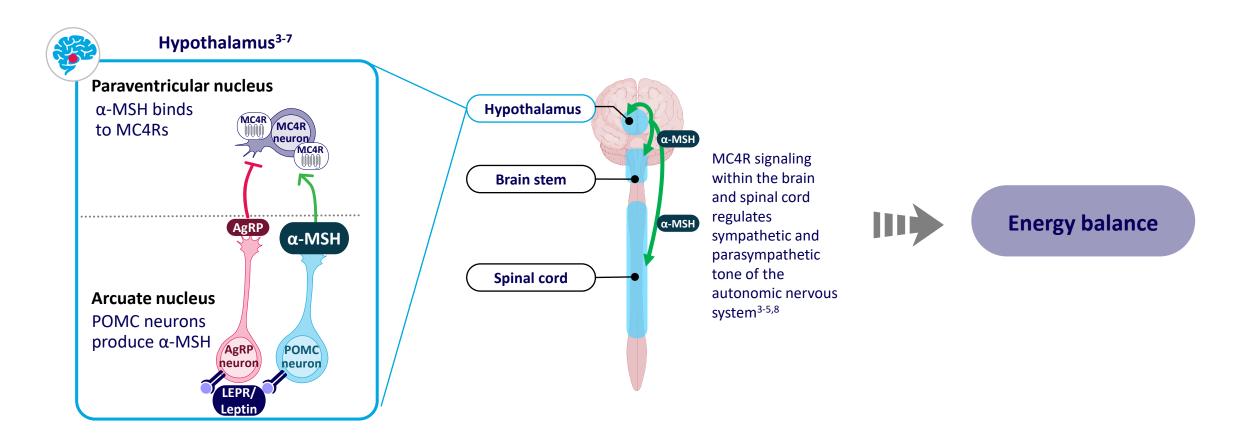
Real-world setmelanotide weight outcomes in French patients with acquired hypothalamic obesity

Presenter: Christine Poitou

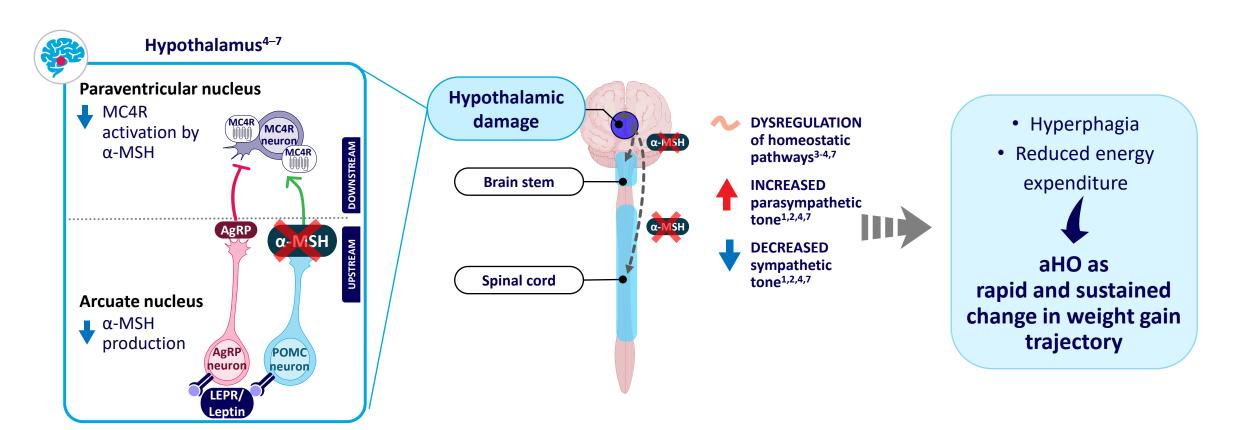
Presentation: OC15.1


Pauline Faucher¹, Sarah Chalopin¹, Frédérique Albarel², Ahlam Azar-Kolakez³, Natacha Bouhours⁴, Jean-Claude Carel³, Régis Coutant⁴, Justine Cristante⁵, Nicolas Farigon⁶, Blandine Gatta-Cherifi⁷, Iva Gueorguieva⁸, Marie Hoflack⁹, Dunlanjalee Kariyawasam¹⁰, Marie Michelet⁷, Patricia Pigeon Kherchiche¹¹, Véronique Savey¹², Bérénice Ségrestin¹³, Caroline Storey³, Géraldine Vitellius¹⁴, Karine Clément¹, Christine Poitou¹

¹Nutrition Department, La Pitié-Salpêtrière Hospital APHP, Sorbonne University, Paris, France; ²Conception Hospital AP-HM, Endocrinology Department, Marseille, France; ³Robert-Debré Hospital APHP, Pediatric Endocrinology-Diabetology Department, Paris, France; ⁴University Hospital of Angers, Pediatric Endocrinology and Diabetology Unit, Angers, France; ⁵University Hospital of Grenoble, Nutrition and Endocrinology Department, Grenoble, France; ⁶University Hospital of Clermont-Ferrand, Clinical Nutrition Department, Clermont-Ferrand, France; ⁷University Hospital of Bordeaux, Department of Endocrinology, Diabetology and Nutrition, Bordeaux, France; ⁸Jeanne de Flandre Hospital, Pediatric Endocrinology Department, Lille, France; ⁹Lenval Foundation, Pediatric Endocrinology Department, Nice, France; ¹⁰Necker-Enfants Malades Hospital APHP, Pediatric Endocrinology, Diabetology and Gynecology Department, Paris, France; ¹¹Felix Guyon Hospital, Pediatric Department, Saint-Denis, La Réunion, France; ¹²Caen-Normandy Hospital, HepatoGastroenterology and Nutrition Department, Caen, France; ¹³Lyon Sud Hospital, Endocrinology Department, Lyon, France; ¹⁴Robert-Debré University Hospital of Reims, Endocrinology, Diabetology and Nutrition Department, Reims, France.

ESPE-ESE 2025 - Conflict Of Interest

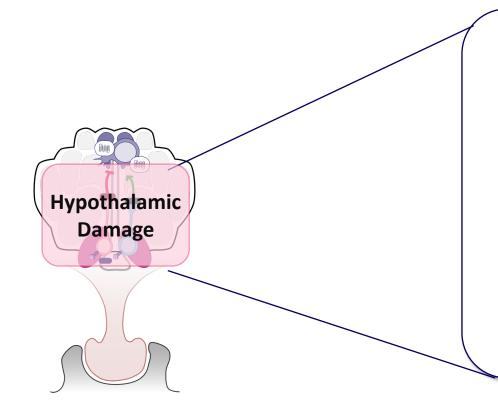
Name: Christine Poitou


The central hypothalamus is a key regulator of energy balance, appetite and bodyweight through the MC4R pathway¹⁻³

α-MSH, α-melanocyte-stimulating hormone; AgRP, agouti-related peptide; LEPR, leptin receptor; MC4R, melanocortin-4 receptor; POMC, proopiomelanocortin.

1. Farooqi IS. *Biol Psychiatry*. 2022;91(10):856–59; 2. Yeo GSH, et al. *Mol Metab*. 2021;48:101206; 3. Baldini G and Phelan KD. *J Endocrinol*. 2019;241(1):R1–R33; 4. Dimitri. *Front Endocrinol*. 2022;13:846880; 5. Hill, et al. *Neuroendocrinol*. 2017;104:330–346; 6. Hochberg, et al. *Obes Rev*. 2010;11:709–721; 7. Roth, et al. *Obesity (Silver Spring)*. 2011;19:36–42; 8. Sohn, et al. *Cell*. 2013;152:612–619.

Development of acquired hypothalamic obesity (aHO)¹⁻³



Hypothalamic damage can be associated with dysregulations in hormonal balance, heart rate, blood pressure, body temperature, circadian rhythms and visual impairment^{1,4}

α-MSH, α-melanocyte-stimulating hormone; AgRP, agouti-related peptide; LEPR, leptin receptor; MC4R, melanocortin-4 receptor; POMC, proopiomelanocortin.

1. Abuzzahab, et al. Horm Res Paediatr. 2019;91:128–136; 2. Roth. Front Endocrinol (Lausanne). 2011;2:49; 3. Roth, et al. Metabolism. 2010;59:186–194; 4. Dimitri. Front Endocrinol (Lausanne). 2022;13:846880; 5. Baldini G and Phelan KD. J Endocrinol. 2019;241(1):R1–R33; 6. Hochberg, et al. Obes Rev. 2010;11:709–721; 7. Roth, et al. Obesity (Silver Spring). 2011;19:36–42.

Both paediatric and adult patients can develop aHO as a consequence of diverse brain changes¹

Causes may include²⁻⁹

- Presence and/or treatment of (supra)sellar tumours of different histology including:
 - Craniopharyngiomas
 - Pituitary tumours
 - Germ cell tumours
 - Chiasmatic hypothalamic gliomas
- Inflammatory diseases (e.g. sarcoidosis, histiocytosis)
- Traumatic brain injury
- Stroke
- Viral infections

The weight gain and appetite changes accompanying HO are often unresponsive to existing therapies for obesity^{2–4}

aHO, acquired hypothalamic obesity.

Muller HL, et al. Nature review: Disease primers. 2022;8:24; 2. Abuzzahab, et al. Horm Res Paediatr. 2019;91:128–136; 3. Roth. Front Endocrinol (Lausanne). 2011;2:49; 4. Dimitri. Front Endocrinol (Lausanne). 2022;13:846880; 5. Baldini, et al. J Endocrinol. 2019;241:R1–R33; 6. Hochberg, et al. Obes Rev. 2010;11:709–721; 7. Sohn, et al. Cell. 2013;152:612–619; 8. Müller HL, et al. Nat Rev Dis Primers. 2019;5(1):75; 9. Müller HL. Handb Clin Neurol. 2014;124:235–253; 10. Witte J, et al. J Neuroendocrinol. 2024; 36(12):e13439.

Background and objective

In a **Phase 2**, open-label trial of setmelanotide, an MC4R agonist, patients with acquired HO experienced consistent and clinically meaningful responses after **16** weeks of treatment, which were maintained or increased for most patients through a 12-month long-term extension trial¹

To analyse real-world outcomes of paediatric and adult patients with acquired HO treated with a minimum of 3 months of treatment with setmelanotide in France under pre-marketing early access authorisation

HO, hypothalamic obesity; MC4R, melanocortin-4 receptor.

1. Roth CL, et al. *Lancet Diabetes Endocrinol* 2024;12:380–389.

Methodology

- Patients with acquired HO were treated with setmelanotide in 14 different care units in France
- Acquired HO:
 - 10 patients <18 years old
 - 20 patients ≥18 years old

- Outcomes included
 - Mean change in BMI or BMI z-score*
 - Physician-reported height and weight was used to calculate BMI and BMI z-scores
 - Changes in hunger scores (if available)
 - A reduction of ≥1 point was considered as a meaningful within-person changes in hunger¹
 - Safety, evaluated by adverse event frequency

^{*}BMI z-score per International Obesity Task Force (IOTF) methodology. BMI, body mass index; HO, hypothalamic obesity.

^{1.} Roth CL, et al. Lancet Diabetes Endocrinol 2024;12:380-389.

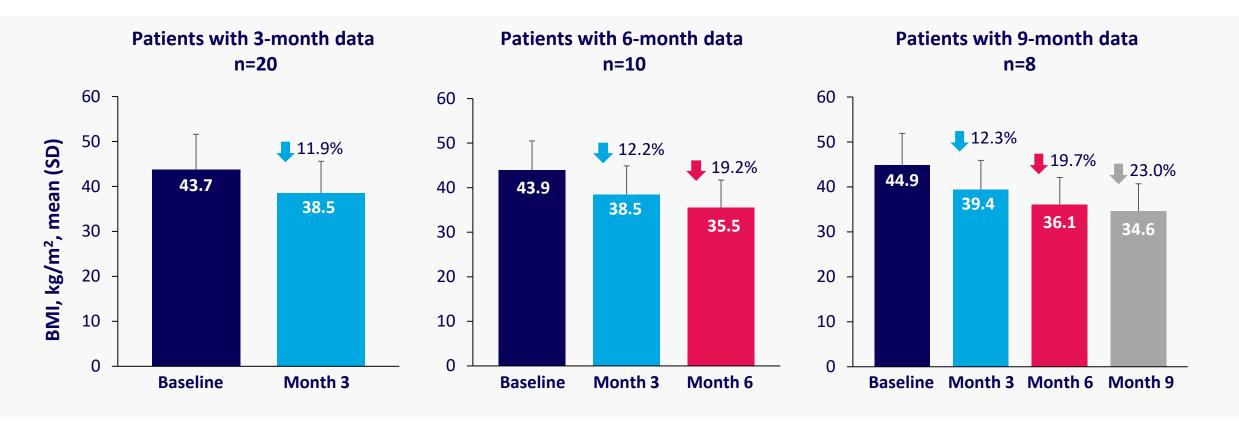
Patient characteristics


	Paediatric (n=10)	Adult (n=20)
Age at setmelanotide initiation, mean (SD), y	12.7 (3.5)	31.5 (7.1)
Sex, n (%)		
Female	5 (50)	13 (65)
Male	5 (50)	7 (35)
Age at onset of obesity, mean (SD), y	9.7 (4.3); n=8	15.5 (8.7); n=17
Age at tumour resection, mean (SD), y	6.7 (4.6); n=9	14.3 (8.8); n=17
Weight at baseline, mean (SD), kg	87.5 (27.4)	128.1 (28.6)
BMI at baseline, mean (SD), kg/m ²	35.9 (9.5)	48.3 (21.6)
BMI z-score at baseline, mean (SD)*	3.1 (1.0)	N/A
Concomitant treatment, n (%)		
GLP-1 receptor agonist	1 (10)	11 (55)
≥1 hormonal replacement therapy	9 (90)	20 (100)
aHO aetiology		
Craniopharyngyoma	4	17
AQP4 antibody encephalitis	1	0
Astrocytoma	3	0
Ganglioma	1	0
Inflammatory viral disease affecting the pituitary gland	1	0
Langheransian histiocytosis	0	2
Neuroglial tumour	0	1

^{*}BMI z-score per International Obesity Task Force (IOTF) methodology.

aHO, acquired hypothalamic obesity; BMI, body mass index; GLP-1, glucagon-like peptide-1; SD, standard deviation.

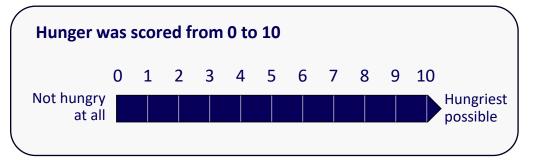
BMI z-score outcomes in paediatric patients with aHO

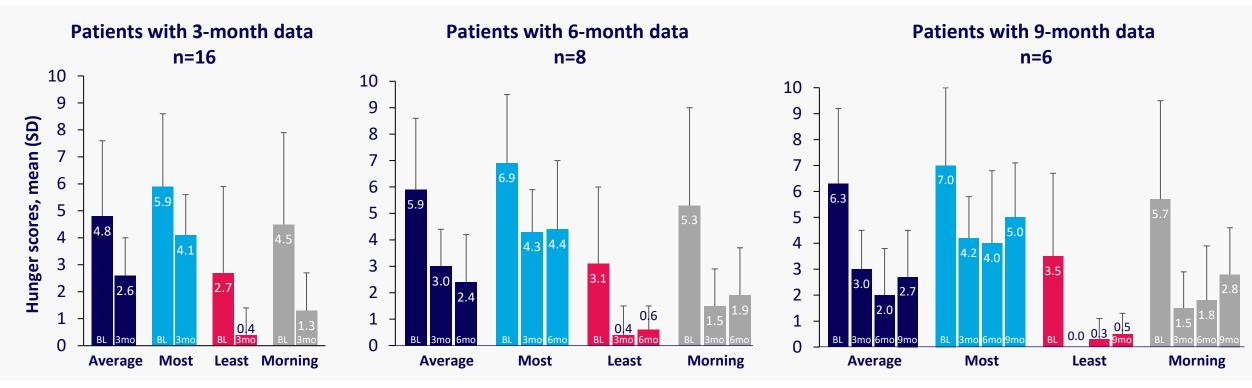

• BMI z-score decreased from baseline at all timepoints analysed, with up to a **0.4-point reduction** at 6 and 9 months of treatment with setmelanotide

^{*}BMI z-score per International Obesity Task Force (IOTF) methodology. A clinically meaningful reduction in BMI z-score is defined as a ≥0.2-point reduction^{1,2} aHO, acquired hypothalamic obesity; BMI, body mass index; SD, standard deviation. 1. Haqq et al. Lancet Diabetes Endocrinol 2022; 2. Roth et al. Lancet Diabetes Endocrinol 2024.

BMI outcomes in adult patients with aHO

• BMI decreased from baseline at all timepoints analysed, with up to a 23% reduction at 9 months of treatment with setmelanotide




aHO, acquired hypothalamic obesity; BMI, body mass index; SD, standard deviation.

Hunger score outcomes in adult patients with aHO

Hunger was assessed using the following questions

- 1. Over the past 24 hours, on average, how hungry have you felt?
- 2. Over the past 24 hours, how hungry did you feel when you were most hungry?
- 3. Over the past 24 hours, how hungry did you feel when you were <u>least</u> hungry?
- 4. This morning, when you woke up early in the day, how hungry did you feel?

aHO, acquired hypothalamic obesity; mo, months. A meaningful within-person change in hunger has been defined as a reduction of at least 1 point in hunger score^{1,2} 1. Haqq et al. Lancet Diabetes Endocrinol 2022; 2. Roth et al. Lancet Diabetes Endocrinol 2024.

Safety outcomes in patients with aHO

- During treatment with setmelanotide patients mostly reported injection-site reactions, hyperpigmentation and nausea
- No new safety concerns were observed
- One paediatric patient with aHO suffered from a serious AE requiring hospitalisation
 - Sudden loss of consciousness without prodroma, absence of abnormal movements, absence of urine loss. Not considered related to setmelanotide treatment; treatment was stopped for 4 days

Adverse event, n (%)	Adult	Paediatric	All
	n=20	n=10	n=30
Injection site reactions	8 (40%)	1 (10%)	9 (30%)
Hyperpigmentation	5 (25%)	0%	5 (16.7%)
Nausea	4 (20%)	0%	4 (13.3%)
Asthenia	3 (15%)	0%	3 (10%)
Headache	3 (15%)	0%	3 (10%)

AE, adverse event; aHO, acquired hypothalamic obesity.

Study limitations

1

Real world studies rely on methods that are inadequate for identifying all possible adverse events 2

Real-world studies are subject to the presence of substantial missing data

3

This real-world study was not designed to accurately capture hunger scores

Conclusions

These real-world data demonstrate a clinical benefit of setmelanotide treatment on BMI and hunger in patients 6–42 years of age with acquired HO

- These real-world data demonstrate that patients with aHO who received ≥3 months of setmelanotide under pre-marketing early access authorisation in France showed consistent reduction in weight outcomes
- Adult patients with aHO reported meaningful decreases in hunger scores after 3 and 6 months of treatment with setmelanotide
- Outcomes were consistent with Phase 2 data
- Setmelanotide was generally well tolerated with the most frequent AEs being injection site reactions and skin hyperpigmentation

AE, adverse event; aHO, acquired hypothalamic obesity.