Real-world setmelanotide weight outcomes in French patients with acquired or congenital hypothalamic obesity

Presenter: Sarah Chalopin Presentation: AD10.02

Pauline Faucher¹, Blandine Gatta-Cherifi², Sarah Chalopin¹, Frédérique Albarel³, Ahlam Azar-Kolakez⁴, Pascal Barat⁵, Natacha Bouhours⁶, Jean-Claude Carel⁴, Régis Coutant⁶, Justine Cristante⁷, Marine Delagrange⁵, Béatrice Dubern⁸, Nicolas Farigon⁹, Iva Gueorguieva¹⁰, Marie Hoflack¹¹, Marie Michelet², Patricia Pigeon Kherchiche¹², Rachel Reynaud¹³, Véronique Savey¹⁴, Bérénice Ségrestin¹⁵, Caroline Storey⁴, Géraldine Vitellius¹⁶, Karine Clément¹, Christine Poitou¹

¹Nutrition Department, La Pitié-Salpêtrière Hospital APHP, Sorbonne University, Paris, France; ²Department of Endocrinology, Diabetology and Nutrition, University Hospital of Bordeaux, France; ³Endocrinology Department, Conception Hospital, AP-HM, Marseille, France; ⁴Pediatric Endocrinology-Diabetology Department, Robert-Debré Hospital APHP, Paris, France; ⁵Pediatric Endocrinology, Diabetology, Gynecology and Obesity Unit, University Hospital of Bordeaux, France; ⁶Pediatric Endocrinology and Diabetology Unit, University Hospital of Angers, France; ⁷Diabetology, Nutrition and Endocrinology Department, University Hospital of Grenoble, France; ⁸Pediatric Nutrition and Gastroenterology Department, Trousseau Hospital APHP, Paris, France; ⁹Clinical Nutrition Department, University Hospital of Clermont-Ferrand, France; ¹⁰Pediatric Endocrinology Department, Jeanne de Flandre Hospital, Lille, France; ¹¹Pediatric Endocrinology Department, Lenval Foundation, Nice, France; ¹²Pediatric Department, Felix Guyon Hospital, Saint-Denis, La Réunion, France; ¹³Multidisciplinary Pediatric Department, Timone Hospital, AP-HM, Marseille, France; ¹⁴Hepato-Gastroenterology and Nutrition Department, Caen-Normandy Hospital, Caen, France; ¹⁵Endocrinology Department, Lyon Sud Hospital, HCL, Lyon, France; ¹⁶Endocrinology, Diabetology and Nutrition Department, Robert-Debré University Hospital of Reims, France.

ECO 2025 - Conflict Of Interest

Name: Sarah Chalopin

□ I have the following potential conflicts of interest to report:

□ Research Contracts

X Consulting

□ Employment in the Industry

□ Stockholder of a healthcare company

□ Owner of a healthcare company

Other(s)

□ I declare that I have no potential conflict of interest.

The central hypothalamus is a key regulator of energy balance, appetite and bodyweight through the MC4R pathway^{1–3}

α-MSH, α-melanocyte-stimulating hormone; AgRP, agouti-related peptide; LEPR, leptin receptor; MC4R, melanocortin-4 receptor; POMC, proopiomelanocortin. 1. Farooqi IS. *Biol Psychiatry*. 2022;91(10):856–59; 2. Yeo GSH, et al. *Mol Metab*. 2021;48:101206; 3. Baldini G and Phelan KD. *J Endocrinol*. 2019;241(1):R1–R33; 4. Dimitri. *Front Endocrinol*. 2022;13:846880; 5. Hill, et al. *Neuroendocrinol*. 2017;104:330–346; 6. Hochberg, et al. *Obes Rev*. 2010;11:709–721; 7. Roth, et al. *Obesity (Silver Spring)*. 2011;19:36–42; 8. Sohn, et al. *Cell*. 2013;152:612–619.

Development of acquired hypothalamic obesity (aHO)¹⁻³

Hypothalamic damage can be associated with dysregulations in hormonal balance, heart rate, blood pressure, body temperature, circadian rhythms and visual impairment^{1,4}

α-MSH, α-melanocyte-stimulating hormone; AgRP, agouti-related peptide; LEPR, leptin receptor; MC4R, melanocortin-4 receptor; POMC, proopiomelanocortin. 1. Abuzzahab, et al. *Horm Res Paediatr*. 2019;91:128–136; 2. Roth. *Front Endocrinol (Lausanne)*. 2011;2:49; 3. Roth, *et al. Metabolism*. 2010;59:186–194; 4. Dimitri. *Front Endocrinol (Lausanne)*. 2022;13:846880; 5. Baldini G and Phelan KD. *J Endocrinol*. 2019;241(1):R1–R33; 6. Hochberg, et al. *Obes Rev*. 2010;11:709–721; 7. Roth, et al. *Obesity (Silver Spring)*. 2011;19:36–42.

Both paediatric and adult patients can develop HO as a consequence of diverse brain changes¹

Causes may include^{2–9}

- Presence and/or treatment of (supra)sellar tumours of different histology including:
 - Craniopharyngiomas
 - Pituitary tumours
 - Germ cell tumours
 - Chiasmatic hypothalamic gliomas
- Inflammatory diseases (e.g. sarcoidosis, histiocytosis)
- Traumatic brain injury
- Stroke
- Viral infections

Congenital forms¹⁰

- Congenital defects are much rarer than acquired forms
- Congenital brain malformations include
 - Rathke's cleft cysts
 - Congenital hypopituitarism
 - Optic nerve hypoplasia
 - Congenital cavernous malformation

The weight gain and appetite changes accompanying HO are often unresponsive to existing therapies for obesity^{2–4}

aHO, acquired hypothalamic obesity; HO, hypothalamic obesity.

1. Muller HL, et al. Nature review: Disease primers. 2022;8:24; 2. Abuzzahab, et al. Horm Res Paediatr. 2019;91:128–136; 3. Roth. Front Endocrinol (Lausanne). 2011;2:49; 4. Dimitri. Front Endocrinol (Lausanne). 2022;13:846880; 5. Baldini, et al. J Endocrinol. 2019;241:R1–R33; 6. Hochberg, et al. Obes Rev. 2010;11:709–721; 7. Sohn, et al. Cell. 2013;152:612–619; 8. Müller HL, et al. Nat Rev Dis Primers. 2019;5(1):75; 9. Müller HL. Handb Clin Neurol. 2014;124:235–253; 10. Tessaris D, et al. Children (Basel). 2021;8(7):531.

Background and objective

In a **Phase 2**, open-label trial of setmelanotide, an MC4R agonist, patients with acquired HO experienced consistent and clinically meaningful responses after **16 weeks of treatment**, which were maintained or increased for most patients through a 12-month long-term extension trial¹

To analyse **real-world outcomes** of paediatric and adult patients with acquired or congenital HO treated with a **minimum of 3 months of treatment** with **setmelanotide in France** under pre-marketing early access authorisation

HO, hypothalamic obesity; MC4R, melanocortin-4 receptor. 1. Roth CL, et al. *Lancet Diabetes Endocrinol* 2024;12:380–389.

Methodology

- Patients with acquired or congenital HO were treated with setmelanotide in 14 different care units in France
- Acquired HO:
 - **10 patients** <18 years old
 - \circ **20 patients** ≥18 years old
- Congenital HO:
 - \circ 4 patients <18 years old
 - 1 patient ≥18 years old

- Outcomes included
 - Mean change in BMI or BMI z-score*
 - Physician-reported height and weight was used to calculate BMI and BMI z-scores
 - Changes in hunger scores (if available)
 - A reduction of ≥1 point was considered as a meaningful within-person changes in hunger¹
 - Safety, evaluated by adverse event frequency

^{*}BMI z-score per International Obesity Task Force (IOTF) methodology.

BMI, body mass index; HO, hypothalamic obesity.

^{1.} Roth CL, et al. Lancet Diabetes Endocrinol 2024;12:380–389.

Patient characteristics

	Acquired hypothalamic obesity		Congenital hypothalamic obesity	
	Paediatric (n=10)	Adult (n=20)	Paediatric (n=4)	Adult (n=1)
Age at setmelanotide initiation, mean (SD), y	12.7 (3.5)	31.5 (7.1)	13.3 (3.5); range 9–17 y	32.0
Sex, n (%)				
Female	5 (50)	13 (65)	1 (25)	1
Male	5 (50)	7 (35)	-	-
Age at onset of obesity, mean (SD), y	9.7 (4.3); n=8	15.5 (8.7); n=17	2.5 and <1 (n=2)	-
Age at tumour resection, mean (SD), y	6.7 (4.6); n=9	14.3 (8.8); n=17	-	-
Weight at baseline, mean (SD), kg	87.5 (27.4)	128.1 (28.6)	104.3 (36.6)	97.5
BMI at baseline, mean (SD), kg/m ²	35.9 (9.5)	48.3 (21.6)	-	39.6
BMI z-score at baseline, mean (SD)*	3.1 (1.0)	N/A	3.7 (0.5)	N/A
Concomitant treatment, n (%)				
GLP-1 receptor agonist	1 (10)	11 (55)	0	0
≥1 hormonal replacement therapy	9 (90)	20 (100)	4 (100)	1
aHO aetiology				
Craniopharyngyoma	4	17	-	-
AQP4 antibody encephalitis	1	-	-	-
Astrocytoma	3	-	-	-
Ganglioma	1	-	-	-
Inflammatory viral disease affecting the pituitary gland	1	-	-	-
Langheransian histiocytosis	0	2	-	-
Neuroglial tumour	0	1		
cHO aetiology	N/A	N/A	SOD n=2; PSIS n=1; Hamartoma n=1	Rathke's cleft cyst

*BMI z-score per International Obesity Task Force (IOTF) methodology.

aHO, acquired hypothalamic obesity; cHO, congenital hypothalamic obesity; BMI, body mass index; GLP-1, glucagon-like peptide-1; PSIS, pituitary stalk interruption syndrome; SOD, septo-optic dysplasia; SD, standard deviation.

BMI z-score outcomes in paediatric patients with aHO

 BMI z-score decreased from baseline at all timepoints analysed, with up to a 0.4-point reduction at 6 and 9 months of treatment with setmelanotide

*BMI z-score per International Obesity Task Force (IOTF) methodology. A clinically meaningful reduction in BMI z-score is defined as a \geq 0.2-point reduction^{1,2} aHO, acquired hypothalamic obesity; BMI, body mass index; SD, standard deviation.

BMI outcomes in adult patients with aHO

 BMI decreased from baseline at all timepoints analysed, with up to a 23% reduction at 9 months of treatment with setmelanotide

aHO, acquired hypothalamic obesity; BMI, body mass index; SD, standard deviation.

32nd European Congress on Obesity • May 11–14, 2025 • Malaga, Spain

Weight outcomes in patients with cHO

- A 15-year-old paediatric patient with cHO showed a reduction in BMI z-score from Baseline (4.1) to Month 3 (3.6), Month 6 (3.0) and Month 9 (2.3), reflecting a reduction of 1.8 points (43.9%) after 9 months of setmelanotide treatment
- The one adult patient with cHO experienced a reduction in BMI from baseline (39.6 kg/m²) to Month 3 (35.5 kg/m²) and Month 6 (33.7 kg/m²), reflecting a reduction of 14.8% after 6 months of setmelanotide treatment

*BMI z-score per International Obesity Task Force (IOTF) methodology. A clinically meaningful reduction in BMI z-score is defined as a \geq 0.2-point reduction^{1,2} BMI, body mass index; cHO, congenital hypothalamic obesity. 1. Haqq et al. Lancet Diabetes Endocrinol 2022; 2. Roth et al. Lancet Diabetes Endocrinol 2024.

Hunger score outcomes in adult patients with aHO

aHO, acquired hypothalamic obesity; mo, months. A meaningful within-person change in hunger has been defined as a reduction of at least 1 point in hunger score^{1,2} 1. Haqq et al. Lancet Diabetes Endocrinol 2022; 2. Roth et al. Lancet Diabetes Endocrinol 2024.

Safety outcomes

- During treatment with setmelanotide patients mostly reported injection-site reactions, hyperpigmentation and nausea
- No new safety concerns were observed
- One paediatric patient with aHO suffered from a serious AE requiring hospitalisation
 - Sudden loss of consciousness without prodroma, absence of abnormal movements, absence of urine loss. Not considered related to setmelanotide treatment; treatment was stopped for 4 days

Adverse event, n (%)	aHO adult	aHO paediatric	сНО	ALL
	n=20	n=10	n=5	n=35
Injection site reactions	8 (40%)	1 (10%)	2 (40%)	11 (31.4%)
Hyperpigmentation	5 (25%)	0%	2 (40%)	7 (20.0%)
Nausea	4 (20%)	0%	0%	4 (11.4%)
Asthenia	3 (15%)	0%	0%	3 (8.6%)
Headache	3 (15%)	0%	0%	3 (8.6%)

AE, adverse event; aHO, acquired hypothalamic obesity; cHO, congenital hypothalamic obesity.

Study limitations

Real-world studies rely on methods that are inadequate for identifying all possible adverse events

Real-world studies are subject to the presence of substantial missing data

2

This real-world study was not designed to accurately capture hunger scores

3

Conclusions

These real-world data demonstrate a clinical benefit of setmelanotide treatment on BMI and hunger in patients 6–42 years of age with acquired or congenital HO

- These real-world data demonstrate that patients with aHO or cHO who received ≥3 months of setmelanotide under pre-marketing early access authorisation in France showed consistent reduction in weight outcomes
- Adult patients with aHO reported **meaningful decreases in hunger scores** after 3 and 6 months of treatment with setmelanotide
- Outcomes were consistent with Phase 2 data
- Setmelanotide was generally well tolerated with the most frequent AEs being injection site reactions and skin hyperpigmentation

AE, adverse event; aHO, acquired hypothalamic obesity; cHO, congenital hypothalamic obesity.